Recognition of convolutional neural network based on CUDA Technology
نویسندگان
چکیده
For the problem whether Graphic Processing Unit(GPU),the stream processor with high performance of floating— point computing is applicable to neural networks, this paper proposes the parallel recognition algorithm of Convolutional Neural Networks(CNNs).It adopts Compute Unified Device Architecture(CUDA)technology, definite the parallel data structures, and describes the mapping mechanism for computing tasks on CUDA.It compares the parallel recognition algorithm achieved on GPU of GTX200 hardware architecture with the serial algorithm on CPU.It improves speed by nearly 60 times.Result shows that GPU based the stream processor architecture ate more applicable to some related applications about neural networks than CPU. Key wordsstream processor;Single—Instruction Multiple—Thread(SIMT);GTX200 hardware architecture;Compute Unified Device Architecture (CUDA)technology;Convolutional Neural Networks (CNNs) The recognition algorithm of Convolutional Neural Networks (CNNs) is widely used in many research areas, but the implementation involves high arithmetic intensity. Use a new emerging paradigm, the streaming model [1] of Graphic Processing Unit (GPU), which has more transistor for data processing and many-core (hundreds of cores) compared with CPU. Significant application-level speedup over uniprocessor execution, easy entrance, numerical precision and accuracy, wide availability to end users and strong scalability, these programmable features of GPU make it a new hotspot.
منابع مشابه
Speech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1506.00074 شماره
صفحات -
تاریخ انتشار 2015